[c++]代码库
temp1.h
#define VertexType int
#define AdjMatrix int
typedef enum{NG, DG, NW, DW}GraphKind;
#define Status int
#define MAX_N 10
#define OK 1
#define ERROR 0
typedef struct{
VertexType vexs[MAX_N];//表示顶点的数组;
AdjMatrix arcs[MAX_N][MAX_N];//表示边的二维数组;
int vexnum,arcnum;//顶点和边的个数;
GraphKind kind;
}MGraph;//定义图MGraph;用邻接矩阵表示。
temp1.cpp
#include<iostream>
#include<fstream>
#include"temp1.h"
using namespace std;
int LocateVex(MGraph G, VertexType v){
//在图G的vexs(顶点)中找值为v的元素的下标,如果没有则返回-1;
for(int i = 0; i < G.vexnum; i++){
if(G.vexs[i] == v){
return i;
}
}
return -1;
}
Status CreateMGraph(MGraph &G){
//创建图G,输入(读文件)的值有
//1.图的顶点数,边/弧的数目,图的类型
//2.依次输入顶点的值
//3.依次输入一条边的起点和终点;
ifstream in;
in.open("data3.txt", ios::in);
cout<<"下列数据从文件data3.txt读入"<<endl<<endl;
cout<<"请输入图的顶点数,边/弧的数目,图的类型"<<endl;
int kind;
in>>G.vexnum>>G.arcnum>>kind;//从文件读入数据,遇到任何结束标记(如空格和换行)则停止。
switch(kind){
case 0 :
G.kind = NG;
break;
case 1:
G.kind = DG;
break;
case 2:
G.kind = NW;
break;
case 3:
G.kind = DW;
break;
}
cout<<"请依次输入顶点的值"<<endl;
for(int i = 0; i < G.vexnum; i++){
in>>G.vexs[i];
}
for(int i = 0; i < G.vexnum; i++){
for(int j = 0; j < G.vexnum; j++){
G.arcs[i][j] = 0;
}
}
cout<<"请依次输入一条边的起点和终点:"<<endl;
for(int k = 0; k < G.arcnum; k++){
int v1, v2, i, j;
in>>v1>>v2;
i = LocateVex(G, v1);
j = LocateVex(G, v2);
G.arcs[i][j] = 1;
if(G.kind == NG)//无向图
G.arcs[j][i] = 1;
}
cout<<endl;
return OK;
}
int Degree(MGraph G, VertexType v){
//求图G中顶点值为v的顶点的度,找到则返回v的度,如果没有顶点值为v的顶点则返回-1;
int i = LocateVex(G, v);
if(i == -1){
return -1;//顶点不存在
}
int num = 0;
for(int j = 0; j < G.vexnum; j++){
if(G.arcs[i][j] == 1){
num++;
}
}
if(G.kind == DG){//有向图
for(int j = 0; j < G.vexnum; j++){
if(G.arcs[j][i] == 1){
num++;
}
}
}
return num;
}
int IsAdj(MGraph G, VertexType v1, VertexType v2){
//判断图G中的顶点v1, v2是否具有邻接关系;如果有图则返回1,带权值的网则返回“权值”;
//没有找到这两个顶点则返回-1
int i = LocateVex(G, v1);
if(i == -1){
return -1;
}
int j = LocateVex(G, v2);
if(j == -1){
return -1;
}
return G.arcs[i][j];
}
Status InsertVertex(MGraph &G, VertexType v){
//在图G中插入顶点v;插在末尾;
if(LocateVex(G, v) != -1){
return ERROR;
}
if(G.vexnum >= MAX_N){
//扩容
}
G.vexs[G.vexnum] = v;
for(int i = 0; i <= G.vexnum; i++){
G.arcs[G.vexnum][i] = 0;
G.arcs[i][G.vexnum] = 0;
}
G.vexnum++;
return OK;
}
Status InsertAdj(MGraph &G, int i, int j){
//增加边/弧,即增加下标为i的顶点到下标为j的顶点之间的邻接关系;
//如果边已经存在则返回ERROR。
if(i < 0 || i >= G.vexnum || j < 0 || j >= G.vexnum){
return ERROR;//顶点不存在
}
if(G.arcs[i][j] == 1){
return ERROR;//边已经存在
}
G.arcs[i][j] = 1;
if(G.kind == NG){
G.arcs[j][i] = 1;
}
G.arcnum++;
return OK;
}
Status DeleteAdj(MGraph &G, int i, int j){
//删除边/弧,即删除下标为i的顶点到下标为j的顶点之间的邻接关系;
//如果边已经不存在则返回ERROR。
if(i < 0 || i > G.vexnum || j < 0 || j >= G.vexnum){
return ERROR;//顶点不存在
}
if(G.arcs[i][j] == 0){
return ERROR;//边已不存在
}
G.arcs[i][j] = 0;
if(G.kind == NG){
G.arcs[j][i] = 0;
}
G.arcnum--;
return OK;
}
int main(){
//依次测试函数CreateMGraph Degree IsAdj InsertVertex
//InsertAdj DeleteAdj
MGraph G;
CreateMGraph(G);
int n;
n = Degree(G, 2);
cout<<"顶点2的度为:"<<n<<endl;
n = IsAdj(G, 3, 4);
cout<<"顶点3, 4之间的邻接关系:"<<n<<endl;
n = IsAdj(G, 3, 2);
cout<<"顶点3, 2之间的邻接关系:"<<n<<endl;
InsertVertex(G, 5);
n = IsAdj(G, 5, 5);
cout<<"顶点5,5之间的邻接关系:"<<n<<endl;
InsertAdj(G, 5, 5);
n = IsAdj(G, 5, 5);
cout<<"顶点5,5之间的邻接关系:"<<n<<endl;
DeleteAdj(G, 3, 4);
n = IsAdj(G, 3, 4);
cout<<"顶点3, 4之间的邻接关系:"<<n<<endl;
system("pause");
return 0;
}
data3.txt
5
5
0
0
1
2
3
4
1
1
1
2
2
4
3
3
3
4