[c++]代码库
#include <dos.h>
#include <conio.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define MAX_VERTEX_NUM 30 //图的最大顶点数
#define MAX 30 //栈的最大容量
#define INFINITY 30000; //定义最大的最迟发生时间
enum BOOL {False,True};
typedef struct ArcNode
{
int adjvex; //该弧所指向的顶点的位置
int weight; //该弧所代表的活动的持续时间
struct ArcNode *nextarc; //指向下一条弧的指针
} ArcNode; //弧结点
typedef struct
{
int indegree[MAX_VERTEX_NUM]; //存放各顶点的入度
ArcNode* AdjList[MAX_VERTEX_NUM]; //指向第一条依附该顶点的弧的指针
int vexnum,arcnum; //图的当前顶点和弧数
} Graph;
typedef struct //定义堆栈结构
{
int elem[MAX]; //栈区
int top; //栈顶指针
} Stack;
int ve[MAX_VERTEX_NUM]; //全局变量,存放各顶点的最早发生时间
void CreateGraph ( Graph & ); //生成图的邻接表
BOOL CriticalPath ( Graph ); //求图的关键路径
BOOL TopologicalSort ( Graph,Stack &T ); //进行拓扑排序
void FindInDegree ( Graph& ); //求图各顶点的入度
void Initial ( Stack & ); //初始化一个堆栈
BOOL Push ( Stack &,int ); //将一个元素入栈
BOOL Pop ( Stack&,int & ); //将一个元素出栈
BOOL Gettop ( Stack,int& ); //得到栈顶元素
BOOL StackEmpty ( Stack ); //判断堆栈是否为空
void main()
{
Graph G; //采用邻接表结构的图
char j='y';
BOOL temp;
textbackground ( 3 ); //设定屏幕颜色
textcolor ( 15 );
clrscr();
//------------------程序解说----------------------------
printf ( "本程序将演示构造图的关键路径.\n" );
printf ( "首先输入图的顶点数和弧数.\n格式:顶点数,弧数;例如:6,8\n" );
printf ( "接着输入各弧(弧尾,弧头)和权值.\n格式:弧尾,弧头,权值;例如:\n1,2,3\n1,3,2\n" );
printf ( "2,5,3\n5,6,1\n2,4,2\n4,6,2\n3,4,4\n3,6,3\n" );
printf ( "程序将会构造该图并找出其关键路径.\n" );
printf ( "关键路径:\n1->3 2\n3->4 4\n4->5 2\n" );
//------------------------------------------------------
while ( j!='N'&&j!='n' )
{
CreateGraph ( G ); //生成邻接表结构的图
temp=CriticalPath ( G ); //寻找G的关键路径
if ( temp==False ) printf ( "该图有回路!\n" );
//若返回为False,表明该图存在有环路
else printf ( "该图没有回路!\n" );
printf ( "关键路径演示完毕,继续进行吗?(Y/N)" );
scanf ( " %c",&j );
}
}
BOOL CriticalPath ( Graph G )
{//G为有向网,输出G的各项关键活动
int j,dut,k,ee,el;
int vl[MAX_VERTEX_NUM]; //存放各顶点的最迟发生时间
Stack T; //堆栈T存放拓扑排序的顶点序列
ArcNode*p;
Initial ( T ); //初始化堆栈T
if ( !TopologicalSort ( G,T ) ) return False;
//利用拓扑排序求出各顶点的最早发生时间,并用T返回拓扑序列,
//若返回False,表明该网有回路
printf ( "Critical Path:\n" );
Gettop ( T,k ); //k取得拓扑序列的最后一个顶点,即该网的汇点
vl[k]=ve[k]; //汇点的vl=ve
for ( j=1; j<=G.vexnum; j++ ) if ( j!=k ) vl[j]=INFINITY; //将其他的顶点的vl置为IFINITY
while ( !StackEmpty ( T ) ) //按拓扑逆序求各顶点的vl值
{
Pop ( T,j );
for ( p=G.AdjList[j]; p; p=p->nextarc )
{
k=p->adjvex;
dut=p->weight;
if ( vl[k]-dut<vl[j] ) vl[j]=vl[k]-dut;
//vl的求法:vl(i)=Min{vl(j)-dut(<i,j>)} <i,j>∈S,i=n-2,...0
}
}
for ( j=1; j<=G.vexnum; j++ ) //求每条弧的最早开始时间ee和最迟开始时间el
for ( p=G.AdjList[j]; p; p=p->nextarc )
{
k=p->adjvex;
dut=p->weight;
ee=ve[j];
el=vl[k]-dut;
if ( ee==el ) printf ( "%d->%d%5d\n",j,k,dut ); //若ee=el,则该弧为关键活动
}
return True;
}
void CreateGraph ( Graph &G )
{//构造邻接表结构的图G
int i;
int start,end,arcweight;
ArcNode *s;
printf ( "请输入顶点数和弧数(顶点数,弧数):" );
scanf ( "%d,%d",&G.vexnum,&G.arcnum ); //输入图的顶点数和弧数
for ( i=1; i<=G.vexnum; i++ ) G.AdjList[i]=NULL; //初始化指针数组
printf ( "请输入各弧和权值,格式:弧尾,弧头,权值\n" );
for ( i=1; i<=G.arcnum; i++ )
{
scanf ( "%d,%d,%d",&start,&end,&arcweight );
//输入弧的起点和终点即该弧所代表的活动的持续时间
s= ( ArcNode * ) malloc ( sizeof ( ArcNode ) ); //生成一个弧结点
s->nextarc=G.AdjList[start]; //插入到邻接表中
s->adjvex=end;
s->weight=arcweight;
G.AdjList[start]=s;
}
}
BOOL TopologicalSort ( Graph G,Stack &T )
{//有向网G采用邻接表存储结构,求各顶点事件的最早发生时间ve,
//T为拓扑序列顶点栈,S为零入度顶点栈。
//若G无回路,则用栈返回G的一个拓扑序列,且函数返回True,否则返回False
int i,k;
int count; //计数器
ArcNode* p;
Stack S;
FindInDegree ( G ); //求出图中各顶点的入度
Initial ( S ); //堆栈初始化,存放入度为零的顶点
for ( i=1; i<=G.vexnum; i++ )
if ( !G.indegree[i] ) Push ( S,i ); //入度为零的顶点入栈
count=0; //对输出顶点记数
for ( i=1; i<=G.vexnum; i++ )
ve[i]=0; //ve初始化
while ( !StackEmpty ( S ) )
{
Pop ( S,i ); //i号顶点出S栈并入T栈,count记数
Push ( T,i );
count++;
for ( p=G.AdjList[i]; p; p=p->nextarc )
{
k=p->adjvex; //对i号顶点的每个邻接顶点的入度减一
if ( ! ( --G.indegree[k] ) ) Push ( S,k ); //若入度为零,入栈
if ( ( ve[i]+p->weight ) >ve[k] ) ve[k]=ve[i]+p->weight;
//修改k号顶点的最迟发生时间
//ve的求法:ve(j)=Max{ve(i)+dut(<i,j>)} <i,j>∈S,j=1,2,…,n-1
}
}
if ( count<G.vexnum ) return False; //如输出顶点数少于图中顶点数,则该图有回路
else return True;
}
void FindInDegree ( Graph &G )
{//求出图G的各顶点的入度,存放在G.indegree[1..G.vexnum]中
int i;
ArcNode* p;
for ( i=1; i<=G.vexnum; i++ )
G.indegree[i]=0;
for ( i=1; i<=G.vexnum; i++ )
{
for ( p=G.AdjList[i]; p; p=p->nextarc )
G.indegree[p->adjvex]++; //弧头顶点的入度加一
}
}
void Initial ( Stack &S )
{
S.top=-1; //栈顶指针初始化为-1
}
BOOL Push ( Stack &S,int ch )
{//将元素ch入栈,成功返回True,失败返回False
if ( S.top>=MAX-1 ) return False;//判断是否栈满
else
{
S.top++; //栈顶指针top加一
S.elem[S.top]=ch; //入栈
return True;
}
}
BOOL Pop ( Stack &S,int &ch )
{//将栈顶元素出栈,成功返回True,并用ch返回该元素值,失败返回False
if ( S.top<=-1 ) return False;//判断是否栈空
else
{
S.top--; //栈顶指针减一
ch=S.elem[S.top+1];
return True;
}
}
BOOL Gettop ( Stack S,int &ch )
{//取得栈顶元素,成功返回True,并用ch返回该元素值,失败返回False
if ( S.top<=-1 )
return False;
else
{
ch=S.elem[S.top];//显示栈顶元素
return True;
}
}
BOOL StackEmpty ( Stack S )
{//判断堆栈是否已空,若空返回True,不空返回False
if ( S.top<=-1 ) return True;
else return False;
}
by: 发表于:2018-01-25 09:41:21 顶(0) | 踩(0) 回复
??
回复评论