[c++]代码库
#include<iostream>
using namespace std;
const int MVN = 21;
typedef char VexType;//顶点元素类型
typedef struct ArcNode
{
int adjvex;//弧指向的顶点位置
int adj;//权
ArcNode *nextarc;//指向下一条弧的顶点
}*ArcPtr;
struct VexNode
{
VexType data;//顶点数据
ArcPtr firstarc;//指向第一条依附于该顶点的弧
bool visited;//是否被访问过
};
struct ALGraph
{
VexNode vexs[MVN];
int kind, vexnum, arcnum;//类型,顶点数,弧数
};
int LocateVex(ALGraph &G, VexType v);//查找顶点
bool InsertArc(ALGraph &G, VexType u, VexType v, int w = 1);//插入弧
void CreateGraph(ALGraph &G, int Kind, char v[]);
void GraphPrint(ALGraph &G);
int Outdegree(ALGraph &G, VexType u);//求一个顶点的出度
int Indegree(ALGraph &G, VexType u);//求一个顶点的入度
int* degree(ALGraph &G);//求全部顶点的入度
int main()
{
char g[] = "sbcd#sbscsdbcbdcd#";
cout << "序列为 "<< endl<<g<< endl;
int Kind = 1;
ALGraph G;
CreateGraph(G, Kind, g);
GraphPrint(G);
VexType u = 's';
int n = Outdegree(G, u);
cout << "顶点"<<u<<"的出度为" << n << endl;
VexType v = 'c';
int m = Indegree(G, v);
cout << "顶点"<<v<<"的入度为" << m << endl;
int *a = degree(G);
cout << "各个顶点的入度依次为:";
for (int j = 1; j <= G.vexnum; j++)
{
cout << a[j] << " ";
}
cout << endl;
return 0;
}
int LocateVex(ALGraph &G, VexType v)
{
int i;
for (i = G.vexnum; i>0 && G.vexs[i].data != v; i--);
return i;
}
bool InsertArc(ALGraph &G, VexType u, VexType v, int w )
{
ArcPtr p;
int i, j;
bool found;
i = LocateVex(G, u);
if (i == 0)
{
return false;
}
j = LocateVex(G, v);
if (j == 0 || j == i)
{
return false;
}
for (found = false, p = G.vexs[i].firstarc; p && !found; p = p->nextarc)
{
if (p->adjvex == j)
{
found = true;
}
}
if (found)
{
return false;
}
G.arcnum++;
p = new ArcNode;
p->adjvex = j;
p->adj = w;
p->nextarc = G.vexs[i].firstarc;
G.vexs[i].firstarc = p;
if (G.kind <= 2)
{
return true;
}
G.arcnum++;
p = new ArcNode;
p->adjvex = i;
p->adj = w;
p->nextarc = G.vexs[j].firstarc;
G.vexs[j].firstarc = p;
return true;
}
void CreateGraph(ALGraph &G, int Kind, char v[])
{
int i, w;
G.kind = Kind;
G.arcnum = 0;
i = 0;
while (true)
{
if (v[i] == '#')
{
break;
}
i++;
G.vexs[i].data = v[i - 1];
G.vexs[i].firstarc = NULL;
}
G.vexnum = i;
i++;
while (true)
{
if (v[i] == '#')
{
break;
}
if (G.kind == 1 || G.kind == 3)
{
w = 1;
}
else
{
w = v[i + 2] - 48;
}
InsertArc(G, v[i], v[i + 1], w);
i = i + 2;
if (w == 2 || w == 4)
{
i++;
}
}
}
void GraphPrint(ALGraph &G)
{
ArcPtr p;
cout << "邻接表" << endl;
for (int i = 1; i <= G.vexnum; i++)
{
cout << G.vexs[i].data;
for (p = G.vexs[i].firstarc; p; p = p->nextarc)
{
cout << "->" << p->adjvex;
}
cout << endl;
}
}
int Outdegree(ALGraph &G, VexType u)
{
int i = LocateVex(G, u);
int n = 0;
ArcPtr p;
for (p = G.vexs[i].firstarc; p; p = p->nextarc)
{
n++;
}
return n;
}
int Indegree(ALGraph &G, VexType u)
{
int i = LocateVex(G, u);
int n = 0;
ArcPtr p;
for (int j = 1; j <= G.vexnum; j++)
{
if (j == i)
{
continue;
}
for (p = G.vexs[j].firstarc; p; p = p->nextarc)
{
if (p->adjvex == i)
{
n++;
break;
}
}
}
return n;
}
int* degree(ALGraph &G)
{
int *a;
a = new int[G.vexnum + 1];
for (int i = 1; i <= G.vexnum; i++)
{
a[i] = 0;
}
ArcPtr p;
for (int j = 1; j <= G.vexnum; j++)
{
for (p = G.vexs[j].firstarc; p; p = p->nextarc)
{
a[p->adjvex]++;
}
}
return a;
}