[python]代码库
import numpy
import scipy.special
import matplotlib.pyplot
%matplotlib inline
class neuralNetwork:
def __init__(self,inputnodes,hiddennodes,outputnodes,learningrate):
self.inodes=inputnodes
self.hnodes=hiddennodes
self.onodes=outputnodes
self.wih=numpy.random.normal(0.0,pow(self.hnodes,-0.5),(self.hnodes,self.inodes))
self.who=numpy.random.normal(0.0,pow(self.onodes,-0.5), (self.onodes,self.hnodes))
self.lr=learningrate
self.activation_function=lambda x:scipy.special.expit(x)
pass
def train(self,inputs_list,targets_list):
inputs=numpy.array(inputs_list,ndmin=2).T
targets=numpy.array(targets_list,ndmin=2).T
hidden_inputs=numpy.dot(self.wih,inputs)
hidden_outputs=self.activation_function(hidden_inputs)
final_inputs=numpy.dot(self.who,hidden_outputs)
final_outputs=self.activation_function(final_inputs)
output_errors=targets-final_outputs #输出误差=目标-最终输出
hidden_errors=numpy.dot(self.who.T,output_errors)
self.who+=self.lr*numpy.dot((output_errors*final_outputs*(1.0-final_outputs)), numpy.transpose(hidden_outputs))
self.wih+=self.lr*numpy.dot((hidden_errors*hidden_outputs*(1.0-hidden_outputs)), numpy.transpose(inputs))
pass
def query(self,inputs_list):
inputs=numpy.array(inputs_list,ndmin=2).T
hidden_inputs=numpy.dot(self.wih,inputs)
hidden_outputs=self.activation_function(hidden_inputs)
final_inputs=numpy.dot(self.who,hidden_outputs)
final_outputs=self.activation_function(final_inputs)
return final_outputs
input_nodes=784
hidden_nodes=200
output_nodes=10
learning_rate=0.1
n=neuralNetwork(input_nodes,hidden_nodes,output_nodes,learning_rate)
training_data_file=open("mnist_dataset/mnist_train_100.csv",'r')
training_data_list=training_data_file.readlines()
training_data_file.close()
epochs=5
for e in range(epochs):
for record in training_data_list:
all_values=record.split(',')
inputs=(numpy.asfarray(all_values[1:])/255.0*0.99)+0.01
targets=numpy.zeros(output_nodes)+0.01
targets[int(all_values[0])]=0.99
n.train(inputs,targets)
pass
pass
test_data_file=open("mnist_dataset/mnist_test_10.csv",'r')
test_data_list=test_data_file.readlines()
test_data_file.close()
scorecard=[]
for record in test_data_list:
all_values=record.split(',')
correct_label=int(all_values[0])
print(correct_label,"correct label")
inputs=(numpy.asfarray(all_values[1:])/255.0*0.99)+0.01
outputs=n.query(inputs)
label=numpy.argmax(outputs)
print(label,"network's answer")
if(label==correct_label):
scorecard.append(1)
else:
scorecard.append(0)
pass
pass
scorecard_array=numpy.asarray(scorecard)
print("performance=",scorecard_array.sum()/scorecard_array.size)
初级程序员
by: 海参OL 发表于:2020-04-27 16:28:24 顶(3) | 踩(1) 回复
我发现小白看是真的一点也看不懂
回复评论