if __name__ = = '__main__' : |
train_x,train_y,test_x,test_y = createDataSet() |
y_test_pred = kNN_classify( 50 , 'E' ,train_x,train_y,test_x) |
q = p = 0 |
for i in range ( 0 ,(test_x.shape[ 0 ])): |
if y_test_pred[i] = = test_y[i]: #如果计算的结果和数据集里的诊断结果一致,q+1,否则p+1, |
q = q + 1 |
else : |
p = p + 1 |
q = (q / (test_x.shape[ 0 ])) * 100 |
p = (p / (test_x.shape[ 0 ])) * 100 |
print ( "{:.2f}%符合,{:.2f}%不符合" . format (q,p)) |
#这个是用jupyter notebook 写的 |