import pandas as pd |
import numpy as np |
from sklearn.datasets import load_digits |
from sklearn.model_selection import train_test_split |
from sklearn.neural_network import MLPClassifier |
digits = load_digits() |
X = digits.data |
y = digits.target |
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3 , random_state = 1 ) |
mlp = MLPClassifier(hidden_layer_sizes = ( 100 , 100 ), max_iter = 500 ) |
mlp.fit(X_train, y_train) |
print ( "预测结果:" , mlp.predict(X_test)) |
print ( "准确率:" , mlp.score(X_test, y_test)) |