[java]代码库
package linear_equation;
import java.util.Scanner;
/*使用SOR迭代法解线性方程组*/
public class SOR_iterate {
/* 浮点数乘以二维矩阵 */
private static float[][] multiply3(float w, float[][] data) {
int m = data.length;
int n = data[0].length;
float temp[][] = new float[m][n];
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
temp[i][j] = w * data[i][j];
}
}
return temp;
}
/* 矩阵相减 */
private static float[][] subtract_matrix(float data1[][], float data2[][]) {
int m = data1.length;
int n = data1[0].length;
float temp[][] = new float[m][n];
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
temp[i][j] = data1[i][j] - data2[i][j];
}
}
return temp;
}
/* 求下三角矩阵,其中输入参数k代表求第k条对角线以下的元素 */
private static float[][] find_lower(float data[][], int k) {
int length = data.length;
float data2[][] = new float[length][length];
if (k >= 0) {
for (int i = 0; i <= length - k - 1; i++) {
for (int j = 0; j <= i + k; j++) {
data2[i][j] = data[i][j];
}
}
for (int i = length - k; i < length; i++) {
for (int j = 0; j < length; j++) {
data2[i][j] = data[i][j];
}
}
} else {
for (int i = -k; i < length; i++) {
for (int j = 0; j <= i + k; j++) {
data2[i][j] = data[i][j];
}
}
}
return data2;
}
/* 输入参数为原矩阵和一个整数,该整数代表从对角线往上或往下平移的元素个数 */
private static float[][] find_upper(float[][] data, int k) {
int length = data.length;
int M = length - k;
float[][] data2 = new float[length][length];
if (k >= 0) {
for (int i = 0; i < M; i++) {
for (int j = k; j < length; j++) {
data2[i][j] = data[i][j];
}
k += 1;
}
} else {
for (int i = 0; i < -k; i++) {
for (int j = 0; j < length; j++) {
data2[i][j] = data[i][j];
}
}
for (int i = -k; i < length; i++) {
for (int j = i + k; j < length; j++) {
data2[i][j] = data[i][j];
}
}
}
return data2;
}
/* 求矩阵的对角矩阵 */
private static float[][] find_diagnal(float A[][]) {
int m = A.length;
int n = A[0].length;
float B[][] = new float[m][n];
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
if (i == j) {
B[i][j] = A[i][j];
}
}
}
return B;
}
/* 原矩阵去掉第i+1行第j+1列后的剩余矩阵 */
private static float[][] get_complement(float[][] data, int i, int j) {
/* x和y为矩阵data的行数和列数 */
int x = data.length;
int y = data[0].length;
/* data2为所求剩余矩阵 */
float data2[][] = new float[x - 1][y - 1];
for (int k = 0; k < x - 1; k++) {
if (k < i) {
for (int kk = 0; kk < y - 1; kk++) {
if (kk < j) {
data2[k][kk] = data[k][kk];
} else {
data2[k][kk] = data[k][kk + 1];
}
}
} else {
for (int kk = 0; kk < y - 1; kk++) {
if (kk < j) {
data2[k][kk] = data[k + 1][kk];
} else {
data2[k][kk] = data[k + 1][kk + 1];
}
}
}
}
return data2;
}
/* 计算矩阵行列式 */
private static float cal_det(float[][] data) {
float ans = 0;
/* 若为2*2的矩阵可直接求值并返回 */
if (data[0].length == 2) {
ans = data[0][0] * data[1][1] - data[0][1] * data[1][0];
} else {
for (int i = 0; i < data[0].length; i++) {
/* 若矩阵不为2*2那么需求出矩阵第一行代数余子式的和 */
float[][] data_temp = get_complement(data, 0, i);
if (i % 2 == 0) {
/* 递归 */
ans = ans + data[0][i] * cal_det(data_temp);
} else {
ans = ans - data[0][i] * cal_det(data_temp);
}
}
}
return ans;
}
/* 计算矩阵的伴随矩阵 */
private static float[][] ajoint(float[][] data) {
int M = data.length;
int N = data[0].length;
float data2[][] = new float[M][N];
for (int i = 0; i < M; i++) {
for (int j = 0; j < N; j++) {
if ((i + j) % 2 == 0) {
data2[i][j] = cal_det(get_complement(data, i, j));
} else {
data2[i][j] = -cal_det(get_complement(data, i, j));
}
}
}
return trans(data2);
}
/* 转置矩阵 */
private static float[][] trans(float[][] data) {
int i = data.length;
int j = data[0].length;
float[][] data2 = new float[j][i];
for (int k2 = 0; k2 < j; k2++) {
for (int k1 = 0; k1 < i; k1++) {
data2[k2][k1] = data[k1][k2];
}
}
/* 将矩阵转置便可得到伴随矩阵 */
return data2;
}
/* 求矩阵的逆,输入参数为原矩阵 */
private static float[][] inv(float[][] data) {
int M = data.length;
int N = data[0].length;
float data2[][] = new float[M][N];
float det_val = cal_det(data);
data2 = ajoint(data);
for (int i = 0; i < M; i++) {
for (int j = 0; j < N; j++) {
data2[i][j] = data2[i][j] / det_val;
}
}
return data2;
}
/* 矩阵相乘 */
private static float[][] multiply(float[][] data1, float[][] data2) {
int M = data1.length;
int N = data1[0].length;
int K = data2[0].length;
float[][] data3 = new float[M][K];
for (int i = 0; i < M; i++) {
for (int j = 0; j < K; j++) {
for (int k = 0; k < N; k++) {
data3[i][j] += data1[i][k] * data2[k][j];
}
}
}
return data3;
}
/* 二维矩阵与一维向量相乘 */
private static float[] multiply2(float[][] data1, float[] data2) {
int M = data1.length;
int N = data1[0].length;
float[] data3 = new float[M];
for (int k = 0; k < M; k++) {
for (int j = 0; j < N; j++) {
data3[k] += data1[k][j] * data2[j];
}
}
return data3;
}
/* 矩阵加法 */
private static float[][] matrix_add(float[][] data1, float[][] data2) {
int M = data1.length;
int N = data1[0].length;
float data[][] = new float[M][N];
for (int i = 0; i < M; i++) {
for (int j = 0; j < N; j++) {
data[i][j] = data1[i][j] + data2[i][j];
}
}
return data;
}
/*向量加法*/
private static float[] matrix_add2(float[] data1,float[] data2){
int M=data1.length;
float data[]=new float[M];
for(int i=0;i<M;i++){
data[i]=data1[i]+data2[i];
}
return data;
}
/*求原矩阵的负*/
private static float[][] opposite_matrix(float[][] data){
int M=data.length;
int N=data[0].length;
float data_temp[][]=new float[M][N];
for(int i=0;i<M;i++){
for(int j=0;j<N;j++){
data_temp[i][j]=-data[i][j];
}
}
return data_temp;
}
/* SOR迭代法,A为系数矩阵,Y为值向量,X为初始迭代向量,w为松弛因子 */
private static float[] SOR_method(float A[][], float Y[], float X[], float w) {
float D[][] = find_diagnal(A);
float L[][] = opposite_matrix(find_lower(A, -1));
float U[][] = opposite_matrix(find_upper(A, 1));
float wL[][] = multiply3(w, L);
float wU[][] = multiply3(w, U);
float D_sub_wL[][] = subtract_matrix(D, wL);
float inv_D_sub_wL[][] = inv(D_sub_wL);
float sub_w=1-w;
float one_sub_w_D[][] = multiply3(sub_w, D);
float temp1[][]=matrix_add(one_sub_w_D, wU);
float B0[][]=multiply(inv_D_sub_wL, temp1);
float temp2[][]=multiply3(w, inv_D_sub_wL);
float F[]=multiply2(temp2, Y);
return matrix_add2(multiply2(B0, X),F);
}
/*求两向量之差的二范数(用于检验误差)*/
private static double cal_error(float[] X1,float[] X2){
int M=X1.length;
double temp=0;
for(int i=0;i<M;i++){
temp+=Math.pow((X1[i]-X2[i]),2);
}
temp=Math.sqrt(temp);
return temp;
}
public static void main(String[] args) {
System.out.println("输入系数矩阵的行和列数:");
Scanner scan=new Scanner(System.in);
int M=scan.nextInt();
System.out.println("输入方程组右侧方程值的维度:");
int K=scan.nextInt();
if(M!=K){
System.out.println("方程组个数和未知数个数不等!");
System.exit(0);
}
System.out.println("输入系数矩阵:");
float[][] A=new float[M][M];
for(int i=0;i<M;i++){
for(int j=0;j<M;j++){
A[i][j]=scan.nextFloat();
}
}
System.out.println("输入值向量");
float[] B=new float[M];
for(int i=0;i<M;i++){
B[i]=scan.nextFloat();
}
System.out.println("输入初始迭代向量:");
float[] X=new float[M];
for(int i=0;i<M;i++){
X[i]=scan.nextFloat();
}
System.out.println("输入松弛因子:");
float w=scan.nextFloat();
System.out.println("输入误差限:");
float er=scan.nextFloat();
float temp[]=new float[M];
while(cal_error((temp=SOR_method(A, B, X, w)), X)>=er){
X=temp;
}
X=temp;
System.out.println("SOR法计算得到的解向量为:");
for(int i=0;i<M;i++){
System.out.println(X[i]+" ");
}
System.out.println();
}
}
//源代码片段来自云代码http://yuncode.net